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Abstract
Scalable exposure assessment approaches that capture personal exposure to particles for purposes of epidemiology are
currently limited, but valuable, particularly in low-/middle-income countries where sources of personal exposure are
often distinct from those of ambient concentrations. We measured 2 × 24-h integrated personal exposure to PM2.5 and black
carbon in two seasons in 402 participants living in peri-urban South India. Means (sd) of PM2.5 personal exposure were 55.1
(82.8) µg/m3 for men and 58.5(58.8) µg/m3 for women; corresponding figures for black carbon were 4.6(7.0) µg/m3 and 6.1
(9.6) µg/m3. Most variability in personal exposure was within participant (intra-class correlation ~20%). Personal exposure
measurements were not correlated (Rspearman < 0.2) with annual ambient concentration at residence modeled by land-use
regression; no subgroup with moderate or good agreement could be identified (weighted kappa ≤ 0.3 in all subgroups).
We developed models to predict personal exposure in men and women separately, based on time-invariant characteristics
collected at baseline (individual, household, and general time-activity) using forward stepwise model building with mixed
models. Models for women included cooking activities and household socio-economic position, while models for men
included smoking and occupation. Models performed moderately in terms of between-participant variance explained
(38–53%) and correlations between predictions and measurements (Rspearman: 0.30–0.50). More detailed, time-varying time-
activity data did not substantially improve the performance of the models. Our results demonstrate the feasibility of
predicting personal exposure in support of epidemiological studies investigating long-term particulate matter exposure in
settings characterized by solid fuel use and high occupational exposure to particles.
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Introduction

The epidemiological evidence linking particulate matter
with diameter <2.5 μm (PM2.5) with premature mortality
and morbidity is large [1, 2]. However, most of this evi-
dence is based on populations in high-income countries,
despite indications that the majority of the attributable
burden of PM2.5 comes from populations from low- and-
middle-income countries (LMICs) [3]. The relative lack
of epidemiological evidence in LMICs, especially for
long-term effects of air pollution, has been highlighted
previously [4].

Epidemiological studies of long-term exposure typically
rely on spatial contrasts to estimate between-individual
exposure. Land-use regression approaches aim to model
ambient levels at residential address and have been widely
used in the epidemiological literature [5, 6]. They have
generally shown good performance in predicting spatial
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patterns of ambient air pollution, especially within urban
areas dominated by traffic sources [6].

New technology allows researchers to directly measure
personal exposure and integrate it with individual character-
istics, time-activity-features, and residence characteristics,
moving beyond traditional estimates of ambient air pollution
at residence [7–10]. Although measurements may be more
accurate than models, both have limitations. Measurements
are often limited to small groups and short durations. Extra-
polating measurements to larger populations for epidemiolo-
gical research is also challenging. One source of complexity
in measuring and modeling personal exposure is the relative
contribution of within-individual (temporal) and between-
individual (spatial) variability in exposure, which has been
stressed before [11, 12]. Understanding these sources of
variability is essential to advance approaches aiming at better
approximate long-term personal exposure to air pollution.

Personal exposure prediction is especially attractive for
air pollution epidemiology in many LMIC settings where
traffic is not necessarily the dominant source. In settings
with high prevalence of cooking with solid fuels or with
high occupational exposures, personal exposure is likely to
differ substantially from estimates of ambient air pollution
at residence. There is a need for population-level exposure
estimates to enable epidemiology that reflect the complexity
of LMIC settings.

We measured and analyzed 24-h integrated personal
exposure to PM2.5 and black carbon in a relatively large
sample of the general population in peri-urban South India.
We specifically aimed to: (1) compare measured personal
exposure with annual ambient concentration estimated at
residence using land-use regression models (previously
developed for the study area), and (2) develop prediction
models that could be used in epidemiological analyses to
predict long-term personal exposure to PM2.5 and black
carbon.

Methods

Study population

We used data collected through the Cardiovascular Health
Effects of Air Pollution in Telangana, India (CHAI) project
nested in the Andhra Pradesh Children and Parents Study
(APCAPS) cohort [13, 14]. APCAPS is a large prospective,
intergenerational cohort study including ~6000 participants
living near the city of Hyderabad, India. The study area
consists of 28 villages each with 187–5065 households
spread over 543 km2 southeast of Hyderabad. Villages vary
in terms of area, population size, socio-economic status,
level of urbanization, and primary cooking fuel. Ethics
approval was granted by the Parc de Salut Mar, Public

Health Foundation of India, National Institute of Nutrition,
Sri Ramachandra University, and the European Research
Council. All participants provided informed consent.

In 2015, CHAI recruited a stratified (by sex and village)
random sample of 402 adult participants of APCAPS. They
were invited to participate in two non-consecutive 24-h
monitoring sessions that included detailed measurements of
self-reported time-activity patterns and particulate air pol-
lution exposure. The first session occurred between May
and July 2015 during summer season (including monsoon);
the second session occurred between December 2015 and
March 2016 during winter season.

Of the 402 selected participants, 81 completed one
monitoring session and 278 completed two or three mon-
itoring sessions, leading to 639 measurements of 24-h
personal exposure to PM2.5 and black carbon. We excluded
13 measurements due to device malfunction (e.g., run time
<70% of the expected 24 h or missing data) or poor com-
pliance (the collocated accelerometer recorded no motion
during monitoring) and 13 measurements due to missing
covariates. We additionally excluded three measurements
showing negative PM2.5 concentrations and 41 measure-
ments with negative black carbon concentrations (poten-
tially due to concentrations below the lower end of the
standard curve used for correction). We therefore analyzed
610 participant-days of PM2.5–569 participant-days of black
carbon—24-h personal exposure, corresponding to 349
unique participants (207 men and 142 women).

Personal exposure

Participants were asked to wear a secured backpack con-
taining a personal exposure monitor to measure their 24-h
integrated gravimetric exposure to PM2.5. The inlet of the
personal monitor was placed near the breathing zone on one
strap of the backpack. The pump (model 224-PCMTX8,
SKC Ltd, Dorset, UK) was placed inside the backpack and
drew air through a sharp cut cyclone attached to a cassette
containing a 37-mm filter (Emfab, 113 Pallflex®). Filters
were weighed pre- and post-monitoring according to pre-
viously described protocol that follows the RTI (Research
Triangle Institute) guidelines [15]. Daily PM2.5 concentra-
tions were derived from filter mass after correction for mass
accumulated on blank filters (session-specific correction
using median blank weights based on 31 blank filters
overall). Daily black carbon concentrations were derived
from optical attenuation (880 nm) of the mass collected on
sampled filters, using a Magee OT21 Sootscan Optical
Transmissometer (Magee Scientific, Berkeley, California,
USA). The factor value used for conversion was consistent
with previous literature [16]. We detected a sensitivity of
the OT21 output to the weight of the unexposed filter, so we
corrected the attenuation factor value for filter weights.
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Sessions began with a field worker setting up the mon-
itoring equipment at the participant’s house (average time:
8 a.m.) and finished the following day around the same
time. Scheduling was designed to minimize disruption to
participants’ daily life. Participants were asked to wear the
backpack during their usual activities for 24 consecutive
hours. If the backpack interfered with activities (e.g.,
sleeping, sitting, bathing), participants were instructed to
place the backpack nearby, on a stool or a chair.

Ambient air pollution

Background measurements: Continuous monitoring of PM2.5

was implemented from 2015 to 2016 at one site in the North
of the study area [17]. Hourly PM2.5 concentrations were
measured using an e-BAM device (model 9800, Met One,
Grants Pass, OR). Missing hourly data (22% of the mon-
itoring sessions) were imputed using a linear regression of
temperature, relative humidity, wind speed (measured at the
Rajiv Gandhi International Airport, located 15.8 km from
North site) and ambient PM2.5 concentrations measured at the
US embassy in Hyderabad, located 23.7 km from North site.
The adjusted-R2 of the model was 0.49 and the 10-fold cross-
validation mean absolute error was 10.3 μg/m3 (standard
deviation of the hourly ambient time series being 21.3 μg/m3).
We calculated daily average ambient PM2.5, temperature, and
relative humidity to correspond with the monitoring sessions.

Ambient concentration at residence: We previously
developed land-use regression models for the study area to
estimate annual ambient concentration to PM2.5 and black
carbon at the residence of all participants [18]. Briefly, the
PM2.5 model included indicators of vegetation and urbani-
city and explained 58% of the spatial variation; the black
carbon model included indicators related to roads, natural
spaces, and non-residential places and explained 78% of the
spatial variation.

Questionnaires

A baseline questionnaire was administered to participants
by members of the field staff at most one month prior to
personal exposure sampling. The questionnaire included
data on general individual characteristics (e.g., age, occu-
pation, smoking habits), usual activities (e.g., average time
spent at work, cooking habits), and residence characteristics
(e.g., primary stove type, kitchen type, and fuel use for
cooking) of the participants. After each monitoring session,
participants completed a post-monitoring questionnaire in
which they were asked by member of the field staff about
major sources of air pollution they had been exposed to
during the session (e.g., solid fuel use for cooking, passive
and active smoking, being in traffic or near open fires).
The questionnaire included an hourly time-activity diary

(1-h slot with up to two main locations and activities). The
questionnaire, developed at Sri Ramachandra University,
has been validated in a previous study involving PM2.5

measurements [19]. Questionnaires are available in the
Supplementary Information.

Statistical analysis

We performed all analyses in men and women separately as
previous results showed strong difference in lifestyle and
behaviors by sex in the study population [20, 21].

Ambient-adjusted personal exposure: For analysis,
measurements of personal exposure were adjusted in order
to account for the day-to-day variability driven by ambient
factors (PM2.5 concentration, temperature, and humidity)
not related to individual characteristics. We used the
background data measured by the e-BAM device located in
the North of the study area. We regressed 24-h average of
log-transformed ambient PM2.5, 24-h average temperature,
and 24-h average relative humidity on log-transformed 24-h
personal exposure (PM2.5 and black carbon), with a random
intercept per participant. The ambient adjustment decreased
the within-participant variance component by 35 and 26%
—relative to the empty model—for PM2.5 and black carbon
personal exposures, respectively. The relationship between
the outcome and predictors was considered as linear. These
predictors were uncorrelated with the variables used in the
prediction models (see below) as pair-wise Pearson corre-
lations were all <0.1. Log transformation was used to ensure
normal distribution of residuals. The resulting marginal
residuals were considered ambient-adjusted personal expo-
sure and used throughout subsequent analyses.

Variance component of personal exposure: A linear
mixed model with only a random intercept per participant
(i.e., empty model) was used to partition personal exposure
variability into within-participant (residual variance) and
between-participant (random effect variance) variability
components. We calculated intra-class correlation coeffi-
cients (ICC) i.e., the proportion of total variability attribu-
table to between-participant variability. Subgroups analysis
were performed.

Personal exposure compared to ambient concentration
at residence: We calculated Spearman correlation coeffi-
cients between personal exposure and ambient concentra-
tion at residence modeled by land-use regression. We
assessed the degree of agreement across rank quintiles of
the different exposure indicators with weighted Kappa.
Agreement more directly assesses whether modeled con-
centration at residence can be used as a proxy for measured
personal exposure. Subgroups analysis were performed.

Prediction models of personal exposure: First, we devel-
oped a model including only time-invariant characteristics of
the participant or his/her household (collected once at
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baseline, complete list available in Supplementary Table S1).
We identified predictors of PM2.5 and black carbon following
a data-driven, forward stepwise procedure. Starting from an
empty mixed model with random intercept per participant,
we tested each of the time-invariant candidate predictors as a
fixed effect. We selected the predictor that yielded the
greatest decrease in the marginal Akaike Information Cri-
terion (AIC) and we repeated the procedure until no addi-
tional variable provided any further decrease in AIC. Within
each iteration, we verified whether any of the included
variables could be removed without increase in AIC and we
checked multicollinearity using the Variance Inflation Factor
(if >5, the predictor was excluded). After final iteration, we
dropped predictors with p-values >0.1 according to a like-
lihood ratio test that compared the model with and without
the predictor. We detected influential observations using
adapted Cook’s distance (if >4/sample size) for mixed model
[22]. Predictors that were sensitive to the removal of influ-
ential observations (i.e., >20% change toward the null in the
corresponding estimates) were excluded from the final
model. We checked model residuals and random effects for
normality and homoscedasticity. Second, we repeated the full
process including time-varying characteristics as potential
predictors. These characteristics related to specific activities
or events that occurred during monitoring and were reported
in the post-monitoring questionnaire (complete list in Sup-
plementary Table S1). Finally, for the two models, we cal-
culated the proportion of within- and between-participant
variance of personal exposure explained by each final model
as compared to the empty model (expressed in percent
change) as previously used [12]. We calculated the root-
mean-square error (RMSE) and Spearman correlation
between averaged exposure and averaged prediction per
participant, among those with ≥2 sessions.

Evaluation of prediction models: We evaluated the
models by performing 10-fold cross-validation at the par-
ticipant level. Briefly, we randomly partitioned participants
in 10 similar-size subgroups—all measurements of each
participant being in the same group. Each subgroup was
used once as a validation dataset for the models previously
developed, which were then fitted in the other nine groups.
To evaluate the robustness of the selected predictors, we
further performed a 10-fold cross-holdout validation [23].
Briefly, the predictor selection procedure was repeated
using nine of the 10 previously partitioned subgroups and
then used to predict personal exposure on the remaining
subgroup, leading to 10 different model applications. We
calculated the RMSE and Spearman correlation between the
averaged exposure and out-of-sample predictions per par-
ticipant, among participants with ≥2 sessions.

Analysis and figures were done using the statistical soft-
ware R version 3.4.0 (R Foundation for Statistical Comput-
ing, Vienna, Austria) [24] using several packages [25–28].

Results

Women were slightly older than men (mean (sd): 45 (11)
vs. 41 (17), respectively) (Table 1). Most women were
illiterate (80%) and engaged in manual unskilled (agri-
cultural) work (60%). At baseline, men reported more
working hours per day than women (6.7 (3.7) vs. 5.1 (3.5),
respectively) and most men reported zero hours spent
cooking with biomass fuel (93%). Forty percent of the
participants reported biomass as the primary cooking fuel in
the household. Mean number of personal exposure mon-
itoring sessions was similar across men and women.

Personal exposure to PM2.5 and black carbon was
slightly higher in women than in men (Table 2). Relative
to women’s, men’s PM2.5 personal exposure showed
larger variability and higher maximum values (up to 1331
μg/m3). On average, ambient concentrations, whether
measured at fixed background site or modeled at residence
using land-use regression, were lower than personal
exposure.

Table 1 Characteristics of the study population

Men Women

N unique participant 207 142

N sessions, m (sd) 1.8 (0.4) 1.7 (0.5)

N sessions, n (%) Two 159 (77) 101 (71)

Age ≥45 years, n (%) 93 (45) 85 (60)

Education, n (%) Illiterate 87 (42) 114 (80)

Occupation skill-level,
n (%)

Unemployed 37 (18) 32 (22)

Manual unskilled 72 (35) 85 (60)

Skilled manual 84 (40) 25 (18)

Non-manual 14 (7) 0

Occupation type, n (%) Agriculture 75 (36) 75 (53)

Industry,
construction

30 (15) 4 (3)

Usual hours/day spent at
work, m (sd)

6.7 (3.7) 5.1 (3.5)

Smoking status, n (%) Non smoker 115 (55) 86 (61)

Passive 37 (18) 56 (39)

Active 55 (27) 0

Primary stove type,
n (%)

Biomass 101 (49) 46 (32)

Kitchen type, n (%) Separate 175 (84) 110 (77)

Usual ventilation during
cooking, n (%)

Always 84 (41) 47 (33)

Usual hours /day spent
cooking on biomass,
n (%)

0 193 (93) 74 (52)

1 13 (6) 51 (36)

≥2 1 (1) 17 (12)

Unemployed category includes housewives, retired participants, and
students

m mean, n number, sd standard deviation

M. Sanchez et al.



Variance components of personal exposure

Log-transformed measured personal exposure to PM2.5 and
black carbon showed much higher within-participant than
between-participant variance, resulting in ICC of 0% in men
and of 12–18% in women. Adjusting for daily ambient
factors decreased the within-participant variance, resulting
in higher ICC for men (18–20%) and slightly higher ICC for
women (21–22%, Supplementary Table S2). The greatest
between-participant variability was observed among parti-
cipants without separate kitchen (36–39% for PM2.5 and
56–60% for black carbon) and actively smoking men (32%
for PM2.5 and 46% for black carbon). Patterns of ICC
according to subgroups were not always the same across
PM2.5 and black carbon or across men and women.

Measured personal compared to ambient
concentration at residence

Figure 1 compares the probability distribution of measured
personal exposure and ambient concentration at residence of
PM2.5 and black carbon in the study population. Distributions
were overlapping but measured personal exposure showed
a much wider distribution. Very weak correlations were

observed between measured personal exposure and ambient
concentration at residence of the same pollutant (Spearman
correlation coefficients between −0.18 and 0.06). Figures
were similar when considering averaged personal exposure
among participants with ≥2 sessions (between −0.16 and
0.09). In men, averaged personal exposure to black carbon
was more correlated with residential PM2.5 than with resi-
dential black carbon (0.25 and 0.07, respectively).

Agreement between rank quintiles of averaged personal
exposure and ambient concentration at residence of the
same pollutant was poor (weighted Kappas <0.09). Poor
agreement between rank quintiles was consistent across
population subgroups (≤0.33). The highest level of agree-
ment, though still poor, was found for black carbon in the
subgroup of women living close to Hyderabad. The direc-
tion of the discrepancy (personal exposure being higher or
lower than ambient concentration at residence) varied with
subgroups (Supplementary Fig. S1-A, Supplementary
Fig. S1-B). For example, for most participants living close
to Hyderabad, PM2.5 concentrations were ranked lower for
personal exposure than for ambient concentration at resi-
dence, while the reverse was observed for most participants
with biomass as primary stove type.

Predictive models of personal exposure

Figure 1 compares the probability distribution of measured
and predicted personal exposures. Distributions were

Table 2 PM2.5 and black carbon exposures in the study population

Men Women

PM2.5 N sessions 367 243

Personal
exposure (24 h)

55.08 (82.78)c

[6; 1331]
58.51 (58.84)d

[3; 564]

Personal exposure
(48-hr average)a

53.11 (59.26)
[17; 730]

60.36 (45.31)
[11; 298]

Annual ambient
concentration at
residenceb

33.02 (2.36)
[25; 37]

32.77 (2.57)
[24; 37]

Ambient fixed
site (24 h)

31.90 (16.10)
[13; 92]

34.16 (18.06)
[13; 92]

Black carbon N sessions 339 220

Personal
exposure (24 h)

4.61 (7.04)c

[0; 111]
6.06 (9.63)d

[0; 100]

Personal exposure
(48-hr average)a

4.72 (6.71)
[0; 75]

6.18 (9.42)
[0; 95]

Annual ambient
concentration at
residenceb

2.51 (0.19)
[2; 3]

2.52 (0.24)
[2; 3]

Figures are mean (sd) [min;max]. Concentrations are expressed in
μg/m3

aOnly participants with two sessions
bEstimated by land-use regression
cCorresponding geometric means (geometric standard deviations) were
41.36 (1.95) for PM2.5 and 3.21 (2.40) for black carbon
dCorresponding geometric means (geometric standard deviations) were
44.78 (2.07) for PM2.5 and 3.78 (2.82) for black carbon

Fig. 1 Probability density of measured and predicted personal expo-
sure and annual ambient concentration at residence in men and
women. Values are natural log-transformed for clarity. Personal
exposure predicted with model including time-invariant predictors.
Annual ambient concentrations at residence estimated by previously
developed land-use regression model
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overlapping with similar means but the distributions for
predicted exposures were much narrower.

In women, predictors of PM2.5 and black carbon expo-
sure mostly related to cooking activities, whether time-
invariant (Table 3) or time-varying (Supplementary
Table S3). For example, 24-h average PM2.5 personal
exposure increased by 13% for each hour spent cooking
with biomass, as reported at baseline. Other predictors
likely reflected the socio-economic status of the household
(occupation of the household head, vehicle ownership, and
time spent in vehicle). Predictors selected during validation
process were highly consistent (Table 4). Models with time-
invariant predictors explained 38% (PM2.5) and 57% (black
carbon) of the between-woman variability in personal
exposure but explained no within-participant variability
(Table 3). Correlations between measurements and predic-
tions were moderate (0.42–0.50) and decreased during
validation process, particularly for PM2.5 (from 0.42 to 0.12,
Table 4). The inclusion of time-varying variables increased
the explained between-participant variance by 26% for
PM2.5 and 10% for black carbon (Supplementary Table S4)
but it improved none of the other metrics considered
(within-participant variability, RMSE, and correlations
between predictions and measurements).

Predictors of PM2.5 and black carbon exposure were
more diverse for men compared to women. Predictors
associated with increased personal exposure primarily
related to occupation (time-invariant or time-varying) and
smoking (Table 3, Supplementary Table S3). Non-smoking
was associated with a 21% decrease in PM2.5 personal
exposure as compared to active smoking, but was not a
predictor for black carbon. Annual ambient PM2.5 at resi-
dence was associated with an increase in personal exposure
for black carbon. Black carbon personal exposure increased
by 4% for each hour spent working during the monitoring
session (Supplementary Table S3). Time-invariant pre-
dictors explained 53% (PM2.5) and 20% (black carbon) of
the between-man variability in personal exposure; correla-
tion coefficients between predicted and measured values
were low (~0.30, Table 3). Similar predictors were selected
during validation process but correlation coefficients halved
(Table 4). Inclusion of time-varying predictors did not
improve the model performance metrics (between- or
within-participant variance, RMSE, and correlation coeffi-
cients) for either PM2.5 or black carbon in men (Supple-
mentary Table S3, Supplementary Table S4).

Discussion

We analyzed personal exposure to PM2.5 and black carbon
in a relatively large sample of the general population of
peri-urban South India. Personal exposures to PM2.5 andTa
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black carbon were, on average, higher than and relatively
poorly correlated with annual ambient concentrations at
residence. Personal exposure variability was substantially
larger within participant than between participant. Pre-
dictors of personal exposure to PM2.5 and black carbon
included cooking activities (women), occupation (men), and
smoking (men). Prediction models explained a moderate
amount of between-person variability in measured personal
exposure, except for black carbon in men where model
performance was poor.

We observed larger within-participant variance com-
pared to between-participant variance in measured personal
exposure for both PM2.5 and black carbon, even after tem-
poral adjustment for daily ambient factors. Compared to
published results for other populations in LMICs, our
results showed lower between-participant variation (Sup-
plementary Table S5). McCracken et al. reported an ICC of
33% in children and 29% in adult women for personal
exposure to CO in Guatemala [12, 29]. Dionisio et al.
reported an ICC of 39% for personal CO for children in The
Gambia [30]. Several studies from high-income countries
have reported higher between-participant variation in PM2.5

personal exposure [31–34], but not all [35]. The relatively
low ICC observed in our study may be due to the limited
number of measurements (2 days in two different seasons).
However, a nested panel study within this population with
up to 6 measurement-days per person throughout the year
observed similar between-participant variability in PM2.5

personal exposure [36]. The large within-participant varia-
bility of personal exposure we observed for women may
reflect the variability generally observed in cooking stove
emissions [37], a major source of particulate matter for
women. This high temporal variability in personal exposure
likely reduces the precision of these measurements as sur-
rogates for long-term exposure in the study population.

Measured personal exposure to PM2.5 and black carbon
showed neither correlation nor agreement (between quin-
tiles) with annual ambient concentration at residence mod-
eled by land-use regression. No subgroup with moderate or
good level of agreement could be identified. However, some
subgroups were identified as having notably low agreement,
for example for PM2.5: male smokers, males with non-
manual occupation, and women with biomass primary
stove. Previous studies from high-income countries have
found modest correlation coefficient between measured
personal exposure and long-term ambient (measured or
modeled) concentrations of PM2.5 [38–40] or black carbon
[41, 42], but generally higher than what we observed.
Although methods may differ across studies (e.g., popula-
tion characteristics, modeling method, monitoring time and
period), the literature generally supports the use of modeled
long-term ambient levels as a surrogate of personal expo-
sure in areas where ambient sources (e.g., traffic) are majorTa
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contributors of personal exposure. This is not the case in our
study area, in which biomass cooking fuel, smoking, and
occupational exposures are dominant sources of personal
exposure. The high variability observed in personal expo-
sure due to these diverse sources likely contributes to the
poor agreement with ambient concentrations at residence.
Land-use regression models aim to estimate spatial varia-
bility in ambient concentrations, while personal exposure is
a mixture of temporal and spatial variations in ambient and
non-ambient levels. They likely capture different compo-
nents of the true exposure and reflect the contribution from
different sources [43]; they are therefore both potentially
relevant in epidemiological studies.

To predict personal exposure, we developed an empiri-
cal, data-driven model based on a stepwise predictor
selection using individual data, residence characteristics,
and general time-activity data. Consistently with literature
in LMICs, women’s personal exposure to PM2.5 and black
carbon were driven by cooking activities or habits (use of
biomass, time spent cooking, and ventilation) and socio-
economic position of the household (use of biomass,
separate kitchen, and motorcycle ownership) [44–47].
Occupational exposure was an important contributor of
PM2.5 personal exposure in men but we were unable to
identify specific occupational tasks relevant for personal
exposure, possible due to the wide variability in occupation
types (e.g. industry or agriculture) and related tasks
throughout the year. In the study area, some of the selected
predictors of personal exposure (use of biomass, motorcycle
ownership, occupation type, and smoking status) correlated
strongly with the urbanization level. Urbanization level
could thus contribute to total personal exposure through
these interrelated aspects. Overall, our models performed
moderately well (except the black carbon model for men) in
terms of between-participant variance explained (38–53%)
and correlations between predictions and measurements
(Spearman coefficients from 0.3–0.5). These results are
comparable with several previous publications. A model for
personal CO exposure in Guatemalan children used a priori
selected predictors and explained 47% of between-
participant variability [12]. Using a backward stepwise
procedure, a PM2.5 model explained 43% of between-
participant variability in pregnant Canadian women [32].
Personal PM2.5 prediction model explained 74% of varia-
bility in summer but only 5% in winter in another study
based on a Canadian population [34]. The PM10 personal
exposure predicted in an Irish population correlated more
strongly (Pearson coefficients between 0.55 and 0.84) with
measurements than did ours [48]. Specific activities or
locations can have a large impact on personal exposure
through peaks of exposure e.g., commuting, smoking, and
using a kerosene lamp [46, 49, 50]. More time-resolved data
could thus help to explain variability in personal exposure.

Yet, in the present study, the addition of more detailed,
time-varying variables about activities performed during the
monitoring did not improve the overall performance or
predictive ability of our models—except for the addition of
cooking activities performed during monitoring in women’s
model for PM2.5 exposure. This overall lack of improve-
ment might be a consequence of the coarse time resolution
of the time-activity questionnaire and its inability to capture
short-term activities or tasks that may be related to peak
exposures [20, 21]. Previous analyses in the study popula-
tion showed better performance of the diary for women than
for men; a result possibly related to the rather homogeneous
activities (related to cooking) performed by women. This
could explain why women’s prediction models for PM2.5

explained more variability after adding the diary data;
however, the predictive ability remained similar.

Our results support the feasibility of using predicted long-
term personal exposure for epidemiological studies in LMIC
contexts. Our aim was to capture total personal exposure and
not just the component of personal exposure due to ambient
concentrations, which could be estimated using other
approaches. Ambient concentrations appear to contribute little
to total exposures for our study population in peri-urban India
as compared to local sources (biomass burning, occupational
exposures, and smoking). The prediction models showed
better out-of-sample predictive ability for personal exposure
(in terms of correlation with measurements) than annual
concentrations at residence modeled by land-use regression.
The variance and interquartile range of the predicted values
were also larger, potentially increasing the statistical power if
used as exposure in an epidemiological analysis. A main
advantage of the continuous predicted values is that they
facilitate estimating an exposure-response function, a clear
advantage over categorical indicators based on cooking fuel,
which have been previously used for epidemiological studies
in LMICs [51]. The literature in settings with prevalent bio-
mass cooking fuel use is largely limited to women and chil-
dren, shedding little light on exposure levels and health effects
in men.

The limitations of the personal exposure predictions war-
rant consideration. First, the majority of the total variability in
measured exposure was within participant, which the models
did not explain beyond adjustment for ambient factors (PM2.5

concentrations and meteorology). More time-resolved or
detailed activity data could have improved the performance of
our models (regarding within-participant variability) as such
data could capture peaks in daily exposure. However, in the
context of epidemiological studies of long-term exposure,
between-participant variability is more relevant, for which
most of our models had moderate performance. For other
research objectives focusing on more time-resolved exposures
(e.g., hourly concentrations), improved time-activity data
are likely to be important as we previously demonstrated in a
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nested panel study using highly time-resolved activity infor-
mation derived from wearable cameras [21]. Second, we had
available only 2 days of personal exposure measurements,
which may not be sufficiently representative of long-term
exposure. Additional repeated measurements throughout a
year would likely have provided a better reflection of long-
term exposure. Nonetheless, in a nested panel study with up
to six repeated measurements, the ICC remained low [36],
suggesting a very large number of repeated measurements
would be required for a notable improvement. Third, we did
not have data to validate the prediction models in an inde-
pendent external dataset. The models appeared robust during
the extensive evaluation process but the evidence of applic-
ability to other populations cannot be ensured. However, as
the study population represents a stratified random sample,
the prediction models could be applied to the general popu-
lation of the study area. Finally, the uncertainties introduced
when deriving black carbon measurements might be an
explanation for the poorer predictive ability of the prediction
models for black carbon as compared to PM2.5.

Our results provide valuable insights into the limited
agreement between measured personal exposure and esti-
mates of annual ambient concentration at residence in a
LMIC setting, where exposure is not dominated by sources
correlated with land use. This has important implications for
epidemiology in this and similar settings, as estimates of
exposure to ambient pollution are likely to capture only a
small fraction of true personal exposure. Our results
demonstrate the feasibility of combining personal exposure
measurements with questionnaire data on usual activities to
generate estimates of particulate matter exposure for a
relatively large population. These estimates appear to cap-
ture aspects of exposure independent of what is captured by
land-use regression. Epidemiological studies of long-term
exposure to particulate air pollution in LMIC settings will
require exposure assessment approaches that consider both
sources of ambient concentrations and of personal exposure.
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